Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083440

RESUMO

Class-II fumarases (fumarate hydratase, FH) are dual-targeted enzymes occurring in the mitochondria and cytosol of all eukaryotes. They are essential components in the DNA damage response (DDR) and, more specifically, protect cells from DNA double-strand breaks. Similarly, the gram-positive bacterium Bacillus subtilis class-II fumarase, in addition to its role in the tricarboxylic acid cycle, participates in the DDR. Escherichia coli harbors three fumarase genes: class-I fumA and fumB and class-II fumC Notably, class-I fumarases show no sequence similarity to class-II fumarases and are of different evolutionary origin. Strikingly, here we show that E. coli fumarase functions are distributed between class-I fumarases, which participate in the DDR, and the class-II fumarase, which participates in respiration. In E. coli, we discover that the signaling molecule, alpha-ketoglutarate (α-KG), has a function, complementing DNA damage sensitivity of fum-null mutants. Excitingly, we identify the E. coli α-KG-dependent DNA repair enzyme AlkB as the target of this interplay of metabolite signaling. In addition to α-KG, fumarate (fumaric acid) is shown to affect DNA damage repair on two different levels, first by directly inhibiting the DNA damage repair enzyme AlkB demethylase activity, both in vitro and in vivo (countering α-KG). The second is a more global effect on transcription, because fum-null mutants exhibit a decrease in transcription of key DNA damage repair genes. Together, these results show evolutionary adaptable metabolic signaling of the DDR, in which fumarases and different metabolites are recruited regardless of the evolutionary enzyme class performing the function.


Assuntos
Dano ao DNA , Escherichia coli/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Enzimas AlkB , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico , Quebras de DNA de Cadeia Dupla , DNA Bacteriano/genética , Fumarato Hidratase/química , Genes Bacterianos
2.
Front Mol Biosci ; 5: 68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090811

RESUMO

Fumarase is an enzyme of the tricarboxylic acid (TCA) cycle in mitochondria, but in recent years, it has emerged as a participant in the response to DNA double strand breaks (DSBs) in the nucleus. In fact, this enzyme is dual-targeted and can be also readily detected in the mitochondrial and cytosolic/nuclear compartments of all the eukaryotic organisms examined. Intriguingly, this evolutionary conserved cytosolic population of fumarase, its enzymatic activity and the associated metabolite fumarate, are required for the cellular DNA damage response (DDR) to double-strand breaks. Here we review findings from yeast and human cells regarding how fumarase and fumarate may precisely participate in the DNA damage response. In yeast, cytosolic fumarase is involved in the homologous recombination (HR) repair pathway, through its function in the DSB resection process. One target of this regulation is the resection enzyme Sae2. In human cells, fumarase is involved in the non-homologous end joining (NHEJ) repair pathway. Fumarase is phosphorylated by the DNA-dependent protein kinase (DNA-PK) complex, which induces the recruitment of fumarase to the DSB and local generation of fumarate. Fumarate inhibits the lysine demethylase 2B (KDM2B), thereby facilitating the dimethylation of histone H3, which leads to the repair of the break by the NHEJ pathway. Finally, we discuss the question how fumarase may function as a tumor suppressor via its metabolite substrate fumarate. We offer a number of models which can explain an apparent contradiction regarding how fumarate absence/accumulation, as a function of subcellular location and stage can determine tumorigenesis. Fumarate, on the one hand, a positive regulator of genome stability (its absence supports genome instability and tumorigenesis) and, on the other hand, its accumulation drives angiogenesis and proliferation (thereby supporting tumor establishment).

3.
Elife ; 62017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140245

RESUMO

Fumarase is distributed between two compartments of the eukaryotic cell. The enzyme catalyses the reversible conversion of fumaric to L-malic acid in mitochondria as part of the tricarboxylic acid (TCA) cycle, and in the cytosol/nucleus as part of the DNA damage response (DDR). Here, we show that fumarase of the model prokaryote Bacillus subtilis (Fum-bc) is induced upon DNA damage, co-localized with the bacterial DNA and is required for the DDR. Fum-bc can substitute for both eukaryotic functions in yeast. Furthermore, we found that the fumarase-dependent intracellular signaling of the B. subtilis DDR is achieved via production of L-malic acid, which affects the translation of RecN, the first protein recruited to DNA damage sites. This study provides a different evolutionary scenario in which the dual function of the ancient prokaryotic fumarase, led to its subsequent distribution into different cellular compartments in eukaryotes.


Assuntos
Bacillus subtilis/enzimologia , Dano ao DNA , DNA Bacteriano/metabolismo , Fumarato Hidratase/metabolismo , Malatos/metabolismo , Proteínas de Bactérias/metabolismo , Enzimas de Restrição do DNA/metabolismo , Teste de Complementação Genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...